Digital Signal Processing 1

안인규 (Inkyu An)

Speech And Audio Recognition (오디오 음성인식)

https://mairlab-km.github.io/

What is Sound?

- The air around us is filled with molecules.
- When you pull a guitar string, it creates a vibration that moves through the molecules in the air.
- The regions of high pressure are compressions and the regions of low pressure as rarefactions.

What is Sound?

The microphone detects these variations in pressure.

When we plot pressure, **relative to atmospheric** pressure, against the position near the string, we see the familiar sinusoidal waveform.

Recording

To record people use microphones

• Microphone picks up these air oscillations in continuous form

These oscillations are converted into

an analog signal and then a dic

signal

Voice Coil

Magnetic Structure

Polymer Diaphragm

Analog and Digital Signals

Analog and Digital Signals

Waveform as Pulse-Code Modulation (PCM)

- Time discretization: we represent the analog signal as a sequence of samples measured at discrete points in time
 Sample rate number of audio samples per second (8kHz, 22.05kHz, 44.1kHz)
- Amplitude discretization: round continuous amplitude to the nearest discrete value
 - Bit depth number of bits per sample (eg. 8, 16, 24, 32 bits)
 Bit rate = bit-depth * sample-rate * audio-
 - channels
- Number of channels: number of signals recorded in parallel (e.g., mono vs. stereo)

Properties of Waveforms: Intensity

Intensity is defined to be the *energy* (E) per unit *area* (A) and time unit (t) carried by a wave:

$$I = \frac{E}{tA} = \frac{P}{A} \longrightarrow power$$

The intensity of a sound wave is proportional to its amplitude squared:

$$I \sim (\Delta p)^2$$

For a discrete-time signal $\{p_n\}_{1:T}$ of length T:

$$I_n \sim p_n^2$$

Properties of Waveforms: Loudness

- Loudness is intensity measured in decibel
- **bel** reports log10 of ratio between measuring signal and reference signal
- In physics, **decibels** are used instead of bels because 1 bel is too large

$$I_{dB} = 10 \log \left(\frac{I}{I_0}\right) = 10 \log \left(\frac{p^2}{p_0^2}\right) =$$
$$= 20 \log \left(\frac{p}{p_0}\right)$$

What about audio formats?

- Uncompressed: WAV, AIFF
- Lossless compression: FLAC, ALAC
- Lossy compression: MP3, Opus

Difficulties in using waveforms

- Waveform is really long (e.g. 44K samples / sec)
- Waveforms provide limited insight into a recording's pitch and speech content
- Can we get a more compact and informative sound representation?

- At its core, Fourier analysis breaks down complex signals into their frequency components.
- It's similar to breaking down a song into its individual musical notes.

• The amplitudes of these frequency components appear on the frequency axis rather than the time axis, forming what's called the (frequency) spectrum

- What is Frequency?
 - Period: T
 - Frequency: f=1/T
 - Question:
 - What is the frequency of the below graph?

- The usefulness of Fourier analysis:
 - It converts a long sequence of time samples into a compact frequency representation.
 - It enables analysis of frequency components and filtering of unwanted frequencies.

• Any absolutely integrable periodic function x(t) with period P can be represented as

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(2\pi \frac{n}{P}t - \phi_n\right)$$

• Any absolutely integrable periodic function x(t) with period P can be represented as

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(2\pi \frac{n}{P}t - \phi_n\right)$$
Frequency

What is the amplitude and the phase?

• Any absolutely integrable periodic function x(t) with period P can be represented as

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(2\pi \frac{n}{P}t - \phi_n\right)$$

Fourier Series: Amplitude-phase form

$$= a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nt}{P}\right) + b_n \sin\left(\frac{2\pi nt}{P}\right) \right)$$

Fourier Series: sine-cosine form

$$=\sum_{n=-\infty}^{\infty}c_ne^{2\pi i\frac{n}{P}t}$$

Fourier Series: exponential form

• Any absolutely integrable periodic function x(t) with period P can be represented as

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(2\pi \frac{n}{P}t - \phi_n\right)$$

Fourier Series: Amplitude-phase form

$$= a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nt}{P}\right) + b_n \sin\left(\frac{2\pi nt}{P}\right) \right)^{n}$$

Fourier Series: sine-cosine form

$$=\sum_{n=-\infty}^{\infty}c_ne^{2\pi i\frac{n}{P}t}$$

Fourier Series: exponential form

Use formular for cosine of the difference cos(A - B) = cos A cos B + sin A sin B

Use Euler's formula

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

Exponential form coefficients

$$c_n = egin{cases} rac{1}{2}(a_n - ib_n) & ext{if } n > 0, \ a_n & ext{if } n = 0, \ rac{1}{2}(a_{-n} + ib_{-n}) & ext{if } n < 0, \end{cases}$$

• Any absolutely integrable periodic function x(t) with period P can be represented as

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(2\pi \frac{n}{P}t - \phi_n\right)$$

Fourier Series: Amplitude-phase form

$$= a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{2\pi nt}{P} \right) + b_n \sin \left(\frac{2\pi nt}{P} \right) \right)$$

Fourier Series: sine-cosine form

$$=\sum_{n=-\infty}^{\infty}c_ne^{2\pi i\frac{n}{P}t}$$

Fourier Series: exponential form

Use Euler's formula
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \qquad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

Fourier Series: Exponential form

Fourier Series & Fourier Coefficient

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{2\pi i \frac{n}{P}t}$$

$$c_n = \frac{1}{P} \int_0^P x(t) e^{-2\pi i \frac{n}{P}t} dt$$
- The set of Fourier coefficients is also called the **spectrum** of $x(t)$
- c_n are **complex** numbers

Fourier coefficient

Fourier Transform

Fourier Series & Fourier Coefficient

P: the period

$$c_n = \frac{1}{P} \int_0^P x(t) e^{-2\pi i \frac{n}{P}t} dt$$

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{x}$$

Fourier coefficient

• Let's assume $P \to \infty$ and $0 \to -\infty$

- Fourier Transform!
 - A mathematical formular that allows us to decompose any signal into its individual **frequencies** and the frequency's **amplitude**

Fourier Transform

- Fourier Transform!
 - A mathematical formular that allows us to decompose any signal into its individual **frequencies** and the frequency's amplitude

Fourier transform

• There is also the inverse Fourier Transform:

Inverse Fourier transform

- In practice our time signal is time-limited and contains *N* non-zero samples taken with a sampling period *T* seconds.
- Let's explore what happens when we try to find its Fourier coefficients.

$$c_k = \frac{1}{P} \int_{0}^{P} x(t)e^{-2\pi i \frac{n}{P}t} dt$$

The integral "turns" into a sum over a discrete set of values
 P = NT

-
$$P = NT$$

$$X[k] = \frac{1}{NT} \sum_{n=0}^{N-1} x(nT)e^{-2\pi i \frac{k}{NT}nT}$$

• Disappears! Now the basis functions are defined by N:

$$c_k = \frac{1}{NT} \sum_{n=0}^{N-1} x(nT) e^{-2\pi i \frac{k}{NT} nT} = \frac{1}{NT} \sum_{n=0}^{N-1} x(nT) e^{-2\pi i \frac{k}{N} n}$$

• The expression above is valid for any integer k but it is *periodic* and repeats every N samples:

$$c_{k+N} = \frac{1}{NT} \sum_{n=0}^{N-1} x(nT)e^{-2\pi i \frac{k+N}{N}n} = \frac{1}{NT} \sum_{n=0}^{N-1} x(nT)e^{-2\pi i \frac{k}{N}n} \cdot e^{-2\pi i n} = c_k$$

• If we operate only with indices of the input signal and spectral samples (setting T=1), we obtain the Discrete Fourier Transform expression:

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-2\pi i \frac{k}{N}n}$$

 We can also write out the expression for the Inverse Discrete Fourier Transform (we'll skip the complete derivation):

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{2\pi i \frac{n}{N}k}$$

Digital Signal Processing 2

안인규 (Inkyu An)

Speech And Audio Recognition (오디오 음성인식)

https://mairlab-km.github.io/

• If we operate only with indices of the input signal and spectral samples (setting T=1), we obtain the Discrete Fourier Transform expression:

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-2\pi i \frac{k}{N}n}$$

 We can also write out the expression for the Inverse Discrete Fourier Transform (we'll skip the complete derivation):

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{2\pi i \frac{n}{N}k}$$

$$X[k] = a_k e^{-i\phi_k} = a_k (\cos(\phi_k) - i\sin(\phi_k))$$
amplitude

• $X = M \cdot x$, where $x = \{x[0], \dots, x[N-1]\}$ and $X = \{X[0], \dots, X[N-1]\}$

$$M_{mn} = \expigg(-2\pi i rac{(m-1)(n-1)}{N}igg)$$

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & e^{-\frac{2\pi i}{N}} & e^{-\frac{4\pi i}{N}} & e^{-\frac{6\pi i}{N}} & \dots & e^{-\frac{2\pi i}{N}(N-1)} \\ 1 & e^{-\frac{4\pi i}{N}} & e^{-\frac{8\pi i}{N}} & e^{-\frac{12\pi i}{N}} & \dots & e^{-\frac{2\pi i}{N}2(N-1)} \\ 1 & e^{-\frac{6\pi i}{N}} & e^{-\frac{12\pi i}{N}} & e^{-\frac{18\pi i}{N}} & \dots & e^{-\frac{2\pi i}{N}3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-\frac{2\pi i}{N}(N-1)} & e^{-\frac{2\pi i}{N}2(N-1)} & e^{-\frac{2\pi i}{N}3(N-1)} & \dots & e^{-\frac{2\pi i}{N}(N-1)^2} \end{pmatrix}$$

We can compute it with FFT, which is extremely fast (theoretically O(NlogN) for signal of size N)

- Example of DFT: $f(t) = 10 \sin(2\pi 10t) + 3 \sin(2\pi 100t)$

- Example of DFT: $f(t) = 10\sin(2\pi 10t) + 3\sin(2\pi 100t)$

- Example of DFT: $f(t) = 10\sin(2\pi 10t) + 3\sin(2\pi 100t)$

- Example of DFT:
 - $f(t) = 10\sin(2\pi 10t) + 3\sin(2\pi 100t)$

$$X_m = a_k(\cos(\phi_k) - i\sin(\phi_k))$$
$$(X_m)^* = a_k(\cos(\phi_k) + i\sin(\phi_k))$$

$$egin{aligned} X_m &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pirac{m}{N}n
ight) \ X_{N-m} &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pirac{N-m}{N}n
ight) \ &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pi n + j2\pirac{m}{N}n
ight) \ &= \sum_{n=0}^{N-1} x_n \exp\left(j2\pirac{m}{N}n
ight) \ &= (X_m)^* \end{aligned}$$

Practice: Discrete Fourier Transform (DFT)

- Colab Practice!
- Example of DFT:
 - $f(t) = 10\sin(2\pi 10t) + 3\sin(2\pi 100t)$

Discrete Fourier Transform (DFT)

- Nyquist(나이퀴스트) Theorem:
 - If a function f(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at series of points spaced 1/2B (**Nyquist frequency**) seconds apart (함수 f(t)가 B 헤르츠보다 높은 주파수를 포함하지 않는다면, 1/2B초 간격으로 주어진 함수값 만으로도 완전히 결정할 수 있다.)
 - E.g., <u>If signal contains frequency 100 Hz</u>, you need to sample at 200 Hz at least to observe this frequency component
 - DFT of a segment of a signal with sample rate B, will produce amplitudes for nfft evenly spread frequencies in range [-B/2; B/2]

Discrete Fourier Transform (DFT)

- Nyquist(나이퀴스트) Theorem:
 - If a function *f(t)* contains no frequencies higher than *B* hertz, it is completely determined by giving its ordinates at series of points spaced 1/2B (**Nyquist frequency**) seconds apart (함수 *f(t)*가 *B* 헤르츠보다 높은 주파수를 포함하지 않는다면, 1/2B초 간격으로 주어진 함수값 만으로도 완전히 결정할 수 있다.)
 - E.g., <u>If signal contains frequency 100 Hz</u>, you need to sample at 200 Hz at least to observe this frequency component
 - DFT of a segment of a signal with sample rate B, will produce amplitudes for nfft evenly spread frequencies in range [-B/2; B/2]

Discrete Fourier Transform (DFT)

https://en.wikipedia.org/wiki/Moir%C3%A9_pattern#

https://www.adobe.com/creativecloud/photography/discover/anti-aliasing.html

- Nyquist(나이퀴스트) Theorem:
 - If a function *f(t)* contains no frequencies higher than *B* hertz, it is completely determined by giving its ordinates at series of points spaced 1/2B (**Nyquist frequency**) seconds apart (함수 *f(t)*가 *B* 헤르츠보다 높은 주파수를 포함하지 않는다면, 1/2B초 간격으로 주어진 함수값 만으로도 완전히 결정할 수 있다.)
 - E.g., <u>If signal contains frequency 100 Hz</u>, you need to sample at 200 Hz at least to observe this frequency component
 - DFT of a segment of a signal with sample rate B, will produce amplitudes for nfft evenly spread frequencies in range [-B/2; B/2]

Aliasing effect in images

• STFT + Window function

- Spectrogram:
 - The output of STFT is a complex matrix of size nFreq * nWindows
 Useually, we look at magnitude and phase of the output

- Spectrogram:
 - The logarithm of the magnitude spectrogram is much easier visually to interpret

- Inver STFT (iSTFT)
 - STFT result can be inverted back given the parameters are known (window, hop and step sizes)

Why do we have to apply window functions: <u>discontinuity problem!</u>

Practice!

• Colab practice!

Mel Spectrogram

- Humans perceive sound on a log-scale
- For human ear:
 - 500 Hz << 600 Hz
 - but 5000 Hz ~= 5100 Hz

There is no single mel-scale formula. [3] The popular formula from O'Shaughnessy's book can be expressed with different logarithmic bases:

$$m = 2595 \log_{10} \left(1 + rac{f}{700}
ight) = 1127 \ln \left(1 + rac{f}{700}
ight)$$

The corresponding inverse expressions are:

$$f = 700 \left(10^{rac{m}{2595}} - 1
ight) = 700 \left(e^{rac{m}{1127}} - 1
ight)$$

https://en.wikipedia.org/wiki/Mel_scale 4

Mel Spectrogram

Mel Spectrogram

Practice!

• Colab practice!

- Fundamental frequency is the physical source frequency, but there are resonances (공진) and harmonics (배움)
- Peaks on envelope curve are formants
- Pitch is perceptual value, F0 is physical, harmonics are k*F0
- For speech F0 lie roughly in the range 80 to 450 Hz, typically males have lower voices than females and children

- Fundamental frequency is the physical source frequency, but there are resonances (공진) and harmonics (배움)
- Peaks on envelope curve are formants
- Pitch is perceptual value, F0 is physical, harmonics are k*F0
- For speech F0 lie roughly in the range 80 to 450 Hz, typically males have lower voices than females and children

40 F1	1 1 1	Speech spectrum
Äge	Female	Male
[years]	Frequency [Hz]	Frequency [Hz]
Infant	440-590	440-590
3	255-360	255-360
8	215-300	210-295
12	200-280	195-275
15	185-260	135-205
Adults	175-245	105-160
0 05	1 15 2 25	2 25 4

- Cepstrum
 - Fourier spectrum of voice has periodic structure
 - Apply Inverse DFT to log-spectrum ($\log |X(\omega)|$) and obtain Cepstrum
 - Peak in Cepstrum should be located at $\frac{1}{F_0}$

₩ 이럴까?

- Mel-Frequency Cepstral Coefficient (MFCC)
 Apply STFT to the signal
 Apply mel filters
 Take the log value

 - Apply Discrete Cosine Transform

Spectrogram after multiplication with mel-weighted filterbank

Corresponding MFCCs

Practice!

• Colab practice!

